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Internal characterisation of radiality
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Fréchet-Urysohn space Radial space
(Xn)n<a) — X (}/a)a<y_’)/

Definition
X is Fréchet-Urysohn at x if whenever x € A, there exists a
sequence (X,)n<w In A that converges to x.

Definition
Y is radial at a point y if whenever y € B, there exists a transfinite
sequence (Yq)a<y in B, for some ordinal y, that converges to y.



First countable space Well-based space

Definition
A point in X is said to be well-based if it has a well-ordered
neighbourhood base with respect to 2.



Definition
LOTS := Linearly-Ordered Topological Space
GO-space := Generalised-Ordered space = Subspaces of LOTS
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Definition

A spoke for a point is a well-based subspace containing that point.



Definition
A collection of spokes . = (S;)jes for a point x is a spoke system
for x if

@::{UB,':VI.E /,B,'EJVXS’}

i€l

is a neighbourhood base for x.

Theorem

Every point with a spoke system is radial.

Proof.

Let (Si)je; be a spoke system for x and let x €A. If for all
iel,x¢ An S;Si, then pick U; € JK(S" such that AnU;=@. Then
U :=Ujes U; is a neighbourhood of x missing A, which is a

contradiction. Thus xe AnS;” for some i € 1, so since S; is
well-based at x, we can find a convergent transfinite sequence
inside An S;.



Definition

A transfinite sequence (xg)q<a converges strictly to a point x if it
converges to that point and x is not in the closure of any initial
segment; that is, x ¢ {xo : @ < B}, for all B<A.

Lemma

If X is radial at x and x € A, then there exists an injective,
transfinite sequence in A that converges strictly to x.

Lemma

Let (xq)a<y be an injective transfinite sequence that converges
strictly to x. Then S :={x}U{xq: a <Y} is a spoke for x.
Proof.

{{ix}U{xq:a€[B,y): B<Yy} is a neighbourhood base for x with
respect to S.



























Theorem

For a point x in a topological space X, the following are equivalent:

1. X is radial at x.

2. X has a spoke system (Sj);e; at x such that for distinct
ijel,x¢&(SinS)\ix}.

Proof.

If X is radial at x and not isolated, define

T ={f: A - X\{x}: A <|X|,f Is injective and f — x strictly}
o ={(F cof :Nf,geF distinct,f [ran(g)] is bdd. in dom(f)}

By Zorn's lemma, pick a maximal & € o/ and define for all

feZ, Yr:={xturan(f). Then by maximality, (Sf)recg is a spoke
system for x. Moreover, for all f,g € F distinct, x & (Sf N Sg)\{x}
by strict convergence and since & € o . O



For more information on this part, see:
http://arxiv.org/abs/1401.6519


http://arxiv.org/abs/1401.6519
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Applications



Lemma

If X is a compact Hausdorff space and x € X is radial, then x has a
closed spoke system # = (S;)jes; i.e., Si is closed in X for each
i€l

Proof.

Let & =(Sf)fes be as in the proof of the existence ofispoke
system for a radial point. Define Ty := {x} UUgedom(f) f[@] for each

feF. Then {Ti\fla]: aedom(f)} is a neighbourhood base for x
with respect to x. Also, T¢ is compact and hence closed. O

From now on, assume X is a non-compact, locally compact
Hausdorff space.

Definition

The one-point compactification of X is denoted by aX, with the
point at infinity denoted by x.



Lemma

If X is a space, Y € X is open and radial and X is radial on X\Y,
then X is radial.

Lemma

Radiality is preserved under closed (or even pseudo-open) images.

Corollary

If X is radial, then X has a radial compactitication if and only if
aX is radial at *.



Definition
The cardinal a is the smallest size of an almost-disjoint family on
w. Note that Ry <a=<c.

Proposition
Let of be an almost-disjoint family on w and consider the
Moore-Mrowka space ¥ (7).

» W(<f) is first-countable.

» If of is maximal then a¥(<f) is not radial at x.

» If || <a, (more generally, o« is nowhere-mad), then a¥(<f)
is Fréchet-Urysohn.



Definition
If P< X is a closed, non-compact subspace which is an ascending

union of compact subsets, we say that P is a path to infinity. We
denote the collection of these by P*(X).

Lemma

P < X is a path to infinity if and only if Pu{x} is a closed spoke of
* in aX.
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P =Ug<1 Ko, Ko € X is compact f 1-1,f — % strictly,ran(f) = X

P(f) = Uaedom(f) f[a]




Theorem
The following are equivalent:
1. aX is radial at *.

2. For every A< X with non-compact closure, an ascending union
(Ka)a<a of compact subsets of X such that K, = An K, for
all @ <A and Ug<p Ko € P®(X).

3. Forall Ce HPEP"O(X)J(P)vUPEP‘”(X)(P\C(P)) has
co-compact interior in X.

Proof.

For the equivalence of 1 and 2: every path to infinity gives rise to a
transfinite sequence and P(f) e P®(X) for any injective transfinite
sequence f converging strictly to . For the equivalence of 1 and 3:
use the equivalence of radiality and existence of closed spoke
systems. Condition 3 is precisely saying that the sets generated
from our spokes are indeed neighbourhoods (it is easily seen that
they form a network). O



Corollary

If aX is radial at x, then every closed, non-compact subset of X
contains a path to infinity.

Theorem

If aX is radial at %, then every compactification of X with finite
remainder is radial at every point in the remainder.

Proof.

Suppose that yX is a finite compactification of X and note that
aXz=yX/(yX\X). If f: 1 — X doesn't contain a subsequence
converging to a point in yX\X, then recursively pick
neighbourhoods of those points missing a tail of a subsequence of
f. Gluing these neighbourhoods together gives a neighbourhood of
yX\X, which will give you the required contradiction. Ol



Definition

A family I < [w]™° is called a tower if it is well-ordered with
respect to 2*. Such a tower is called inextendible if it has no
infinite pseudointersection; that is, there is no infinite P < w such
that P<* T for all T e 9. The tower number t is the least size of
an inextendible tower. Note that RX; <t<c.

Theorem

Assume aX is radial at x and let yX be a compactification of X
such that either yX\X is countable or X is countable and |yX| < t.
Then for every A< X with non-compact closure, there exists a
transfinite sequence in A that converges to some point in A.
Moreover, if both X is sequential (= pseudoradial) and yX\X is
sequential / pseudoradial, then yX is sequential / pseudoradial.

Proof.

Use a similar argument as above for finite remainders. Ol



Now let X be a Stone space (compact, Hausdorff, 0-dimensional).
Definition

If 98 is a Boolean algebra and % is an ultrafilter on % (the set of
these is denoted by S(£8)), then a subfilter # € % is called a
lineariser of U it U |F ={|u]g : ue U} is well-based in 2B/F (has
a well-ordered neighbourhood base with respect to 8/%). The
collection of these is denoted L(%).

Definition
For a filter & on a Boolean algebra 2, define

Cq ={UeS(B): F U}

Lemma

Let 9B be a Boolean algebra, «f <S(2B) be given. Then of = Cr..
In particular, Cg is closed for all filters & on 2.



Theorem
Let 9B be a Boolean algebra, U € S(98) be given. Then the
following are equivalent:
1. S(®B) is radial at % .
2. VoA =S(B), if N <% then there exists F € L(%) such that
A1V F) U, where IV F =V et . F<V}=dNCg.
3. For all BeY %)y, there exists be % such that
[b] cUgeL() C# N [B(F)].

Proof.

For the equivalence of 1 and 2: (Cz)geL(a) s a spoke system
when % is radial and use previous proof of radiality following from
the existence of a spoke system. For the equivalence of 1 and 3:
use the theorem for radiality at x together with S(9)\{%} = S(%)
when % is not isolated (i.e. fixed). O



